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Mild-slope approximation for long waves generated by short waves
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Abstract. The mild-slope approximation has become a popular basis for calculating infinitesimal surface waves on
slowly varying depth. It is less restrictive hence more advantageous than the ray and parabolic approximations for
describing diffraction and refraction by bathymetry and/or by complex coastlines. Since its computation involves
only two horizontal coordinates, the mild-slope equation is also numerically less demanding than the solution of
fully three-dimensional equations for a horizontal area with sides much greater than the typical wavelength. By
consideration of nonlinear effects of the second order, the mild-slope approximation for long waves over slowly
varying depth is derived here, in order to provide a convenient basis for predicting long-period resonance in a large
harbor by short-period wind waves.
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1. Introduction

In many harbors of horizontal dimensionsO(1 − 10 km) oscillations of periods ofO(1 −
10 min) have often been recorded. When one of these modes is resonated, costly damages to
ship fenders and mooring lines and hazards to loading and unloading are possible. Expensive
remedies by adding or modifying breakwaters may not be effective unless the mechanism of
resonance can be properly predicted. As an example, to eliminate recorded slow oscillations
in Pier J and in the Naval Basin at the Port of Long Beach, California, renovations are being
proceeded on the basis of linearized theory of resonance. In both laboratory and numerical
models, the incident waves are assumed to have the same frequency as that of the resonant
mode. This assumption is, however, questionable since the incident waves are not of tsunami
origin and are caused by distant wind. Energy in the long-period part of the sea spectrum is
the nonlinear consequence of the short wind waves of periods in the 5∼ 15-second range. In
principle, the long waves cannot be treated separately from the short waves.

There exist a few theories treating long-period harbor oscillations by groups of short-period
wind waves. Bowers [1] considered two narrow channels in series with the outer channel being
wider and the waves are long-crested in both channels. Mei and Agnon [2] gave an analytical
theory for a narrow bay perpendicular to a long and straight coast; the sea depth being constant
everywhere. Wu and Liu [3] considered a rectangular harbor with two breakwaters along a
straight coast, also for constant depth. The physical picture described in all these theories is
that periodic groups of narrow-banded incident short waves are accompanied by long-period
set-down waves propagating at the group velocity of the short carrier waves. Upon reflection
by the coast and scattering by the harbor entrance, free long waves of much longer period,
unforced by radiation stresses, are also generated in and outside the harbor. These free long
waves, which have the characteristic velocity

√
gh, can be resonated inside the harbor to
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44 Chiang C. Mei

significant amplitude. Other related theories on long waves by short wave groups have been
published earlier by Mei and Benmoussa [4] for refraction over one-dimensional bathymetry,
Agnon and Mei [5] for diffraction and radiation by a two-dimensional floating cylinder, Agnon
and Mei [6] for diffraction by an infinitely long shelf, and Zhou and Liu [7] for scattering by a
circular island on a horizontal seabed. There is yet no general theory for effective calculation
of the combined effects of bathymetry and lateral boundaries (coastline, breakwaters).

Since caustics can occur over a mildly sloping seabed, a good theoretical model must be
able to account for both refraction and diffraction. For resonance by long-period tsunamis
the linearized long-wave equation can be treated effectively by the hybrid-element method of
Chen and Mei [8]. For short wind waves over slowly varying bathymetry, the ray approxima-
tion, which involves one-dimensional computations, is useful only if caustics are not present.
When either caustics or breakwaters are present, the mild-slope equation (MSE) is a better tool
since it has the important advantage of accounting for both refraction and diffraction. From
the computational standpoint MSE reduces the mathematical problem from three- to two-
space dimensions, and can also be solved by the hybrid-element method, as demonstrated by
Houston [9]. Various extensions of the mild-slope equation have been made by several authors
in recent years (Booij [10] for waves on a current; Radder [11] for narrow frequency band,
Kirby [12], Chamberlain and Porter [13] and Porter and Staziker [14] for not-so-mild bed
slope).

To treat harbor oscillations due to narrow-banded short waves which are both refracted and
diffracted by slowly varying bathymetry, it is desirable to extend the mild-slope approximation
to long waves as well. Leth be the typical depthk,A, ω and1ω be the typical wave number,
amplitude, frequency, and frequency band width, respectively. Thenε = kA represents the
typical wave steepness andµ = 1ω/ω the rate of modulation. In this paper we shall assume
these two ratios to be small and comparable

ε = O(µ)� 1. (1.1)

In addition the spatial rate of depth variation with a wavelength is also small

∇h
kh
= O(µ) = O(ε)� 1. (1.2)

We shall obtain the mild-slope approximation for both the short and long waves up to the
second orderO(ε2), O(εµ) and for the ranges ofµωt = O(1) and (µkx,µky) = O(1).
The resulting equations can be used as the basis for numerical modelling of harbor problems
by the hybrid-element method. Steps for application to harbor oscillations are sketched, and
numerical implementation will be reported in the future.

2. The governing equations

For an incompressible and inviscid fluid the velocity potential is governed by Laplace’s equa-
tion in the fluid

∂2φ

∂z2
+∇2φ = 0 − h(x, y) < z < ζ(x, y, t), (2.1)

where∇ denotes the horizontal gradient

∇ =
(
∂

∂x
,
∂

∂y

)
and ∇2 ≡ ∂2

∂x2
+ ∂2

∂y2
. (2.2)
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On the seabed there can be no normal flux

∂φ

∂z
= −∇φ · ∇h. (2.3)

On the free surfacez = ζ(x, y, t), we assume that the atmospheric pressure is a constant. The
kinematic and dynamic conditions can be combined to give

∂2φ

∂t2
+ g ∂φ

∂z
= − ∂

∂t
(u)2− 1

2u · ∇u2, (2.4)

whereu = (∂φ/∂x, ∂φ/∂y, ∂φ/∂z). The free-surface displacement is related toφ by the
Bernoulli equation

ζ = −1

g

∂φ

∂t
+ 1

2g

[(
∂φ

∂x

)2

+
(
∂φ

∂y

)2

+
(
∂φ

∂z

)2
]
. (2.5)

Anticipating that the free-surface displacement corresponding to the slow oscillations be
of O(ε2), orO(εµ) we expect the potential to have zeroth and first harmonics atO(ε), and
second harmonics atO(ε2), i.e.,

φ = ε(φ0+ φ1 e−iωt + ∗)+ ε2(φ2 e−2iωt + ∗)+O(ε3), (2.6)

where∗ denotes the complex conjugate of the preceding term, andφn = φn(x, y, z, t ′), n =
0,1,2, . . . with t ′ = µt . All termsφn are of order unity and include terms of higher orders in
ε andµ. In principle, multiple-scale spatial coordinates can also be introduced to describe the
first and slow variations in horizontal directions. Note thatεφ0, which is of orderO(ε), varies
with the time slowly and affects the pressure field at the second order throughεµ∂φ0/∂t

′ in
the Bernoulli equation.

To examine long waves of frequencyO(εω) or O(µω) it is necessary to keep the term
εµ2∂2φ0/∂t

′2 which must arise from (2.4); hence it is necessary to keep some high-order terms
includingO(εµ2) andO(µε2). Specifically, after Taylor expansion aboutz = 0, quadratic
terms in (2.4) and (2.5) must be kept,i.e.,

∂2φ

∂t2
+ g ∂φ

∂z
= ∂

∂t

{
−1

2

[(
∂φ

∂x

)2

+
(
∂φ

∂y

)2

+
(
∂φ

∂z

)2
]
+ 1

g

∂φ

∂t

∂2φ

∂t∂z

}

− ∂

∂x

(
∂φ

∂t

∂φ

∂x

)
− ∂

∂y

(
∂φ

∂t

∂φ

∂y

)
+O(ε3). (2.7)

All terms of the right will contribute to terms that vary in time only slowly and of the order
O(ε2µ). On the other hand, cubic terms, which give rise to odd harmonics only, will not
contribute to the long wave atO(ε3).
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3. Harmonic decomposition

Substituting (2.6) in (2.1) and (2.3), we get after separating the time-harmonics

∂2φn

∂z2
+∇2φn = 0, −h < z < ζ, (3.1)

whereh is a slowly varying function ofx andy. Similarly, from the seabed boundary condi-
tions we get from various harmonics

∂φn

∂z
= −∇φn · ∇h n = 0,1,2, . . . . (3.2)

On the free surface the boundary conditions involve time derivatives. For narrow-banded
waves it is convenient to use the fast and slow time variablest andt ′ = µt so that

∂2φ

∂t2
⇒ ∂2φ

∂t2
+ 2µ

∂2φ

∂t∂t ′
+ µ2∂

2φ

∂t ′2
. (3.3)

Substituting (2.6) in (2.7) and separating the harmonics, we get, by keeping terms of orders
O(ε),O(εµ) andO(εµ2), and then dividing the entire boundary condition byε, the following
zeroth harmonic

∂φo

∂z
= −µ

2

g

∂2φ0

∂t ′2
+ F0, z = 0, (3.4)

where

F0 = −εµ
g

{(
∂φ0

∂x

∂2φ0

∂x∂t ′
+ ∂φ0

∂y

∂2φ0

∂y∂t ′
+ ∂φ0

∂z

∂2φ0

∂z∂t ′

)

− ∂

∂t ′

(∣∣∣∣∂φ1

∂x

∣∣∣∣2+ ∣∣∣∣∂φ1

∂y

∣∣∣∣2+ ∣∣∣∣∂φ1

∂z

∣∣∣∣2
)

+ ω2

g

(
φ1
∂2φ∗1
∂z∂t ′

+ ∂φ1

∂t ′
∂φ∗1
∂z
+ ∗

)}

− ε
g

{
∂

∂x

[(
−iωφ1+ µ∂φ1

∂t ′

)
∂φ∗1
∂x
+ ∗

]

+ ∂

∂y

[(
−iωφ1+ µ∂φ1

∂t ′

)
∂φ∗1
∂y
+ ∗

]}

−εµ
g

{
∂

∂x

(
∂φ0

∂t ′
∂φ0

∂x
+ ∗

)
+ ∂

∂y

(
∂φ0

∂t ′
∂φ0

∂y
+ ∗

)}
. (3.5)

All terms on the right-hand side are evaluated atz = 0.
For the first harmonic, it suffices to keep terms of orderO(ε),O(ε2) andO(εµ) with the

result

∂φ1

∂z
= ω2

g
φ1 + F1, z = 0, (3.6)
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where

F1 = ε2iω

g
∇φ0 · ∇φ1 + µ2iω

∂φ1

∂t ′
, z = 0. (3.7)

Finally, for the second harmonic it is only necessary to keepO(ε2) andO(εµ) terms,
yielding

∂φ2

∂z
= 4ω2

g
φ2+ F2, z = 0, (3.8)

where

F2 = iω

g

{(
∂φ1

∂x

)2

+
(
∂φ1

∂y

)2

+
(
∂φ1

∂z

)2

+ 2ω2

g
φ1
∂φ1

∂z

+ ∂

∂x

(
φ1
∂φ1

∂x

)
+ ∂

∂y

(
φ1
∂φ1

∂y

)}
, z = 0. (3.9)

In view of the boundary conditions (3.2) and (3.4),∂φo/∂z = 0 on bothz = 0 andh
to the leading order. This suggests, subject toa posteriori check for consistency, thatφ0 is
independent of the fast coordinatesx, y, z to the leading order,i.e.,

φ0 = φ00

(
x
′
, y
′
, t
′)+ εφ01

(
x, y, z, x

′
, y
′
, t
′)+O(ε2). (3.10)

Thus

∇φ0 = µ∇′φ00+ ε∇φ01+O(ε2, εµ,µ2), (3.11)

where

∇′ =
(
∂

∂x′
,
∂

∂y′

)
,

andF0 andF1 may then be simplified to

F0 = −εµ
g

{
− ∂

∂t ′

(∣∣∣∣∂φ1

∂x

∣∣∣∣2+ ∣∣∣∣∂φ1

∂y

∣∣∣∣2+ ∣∣∣∣∂φ1

∂z

∣∣∣∣2
)
+ ω

2

g

(
φ1
∂2φ∗1
∂z∂t ′

+ ∂φ1

∂t ′
∂φ∗

∂z
+ ∗

)}

− ε
g

{
∂

∂x

[(
−iωφ1+ µ∂φ1

∂t ′

)
∂φ∗1
∂x
+ ∗

]
+ ∂

∂y

[(
−iωφ1+ µ∂φ1

∂t ′

)
∂φ∗1
∂y
+ ∗

]}
(3.12)

and

F1 = 2iµω
∂φ1

∂t ′
. (3.13)
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4. Mild-slope approximation

For monochromatic surface waves of infinitesimal amplitude, the approach of Smith and
Spinks [15] for deriving the mild-slope equation is as follows. They first assume a solution for
φ1 in the form which is valid for locally constant depth, and then take a weighted vertical
average of the three-dimensional equation via Green’s formula. Here the three potentials
φ0, φ1 andφ2 are governed by similar linear boundary-value problems, hence their approach
can be applied to all.

4.1. FIRST HARMONIC

For convenience we first recall the procedure of Smith and Spinks, and introduce

f (x, y, z) = coshk(z+ h)
coshkh

(4.1)

with

ω2 = gk tanhkh. (4.2)

Note thatf is the homogeneous solution to the boundary value problem,

∂2f

∂z2
− k2f = 0, −h < z < 0, (4.3)

∂f

∂z
− ω

2

g
f = 0, z = 0, (4.4)

∂f

∂z
= 0, z = −h. (4.5)

Applying Green’s formula tof andφ1 we get∫ 0

−h

(
f
∂2φ1

∂z2
− φ1

∂2f

∂z2

)
dz =

[
f
∂φ1

∂z
− φ1

∂f

∂z

]0

h

. (4.6)

By using the conditions governingf : (4.3) to (4.5)andφ1: (3.1), (3.2) and (3.6), we can easily
prove that∫ 0

−h
∇2φ1 dz+

∫ 0

−h
k2fφ1 dz+ f [∇φ1]−h · ∇h = −

[
fF1

]
z=0 , (4.7)

We now assume

φ1 = − ig
ω
η(x, y)f (x, y, z) (4.8)

and substitute this, (4.1) and (3.13) in (4.6). Keeping only terms ofO(µ0) andO(µ), we get

∇ · (CCg∇η)+ ω2Cg

C
η + 2iωµ

∂η

∂t ′
= 0. (4.9)
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WhereC andCg denote the phase and group velocities, respectively

C = ω

k
, Cg = C

2

(
1+ 2kh

kh sinh

)
. (4.10)

Without the third term on the left, this is the original mild-slope equation (MSE) for mono-
chromatic waves. The additional term is consistent with the extension by Radder [11] based
on a Hamiltonian approach.

4.2. ZEROTH HARMONIC

Integration of (3.1) forn = 0 from z = −h to z = 0 gives∫ 0

−h
∂2φ0

∂z2
dz =

[
∂φ0

∂z

]
0

−
[
∂φ0

∂z

]
−h
. (4.11)

This amounts to the application of Green formula toφ0 and 1. Employing the boundary
conditions onz = 0 andh, (3.2) and (3.4), we get

µ2∂
2φ2

0

∂t ′2
− g∇ · (h∇φ0) = gF0. (4.12)

This is the mild-slope approximation for the zeroth time-harmonic which contains fast and
slow variation in space. To gain further insight and to check the consistency of the assumption
(3.10), we use multiple-scale coordinates in space,x′i = µxi , in order to separate terms of
different orders in (4.12). At the orderO(ε) we get

ε{−g∇ · (h∇φ01)} = −ε
[
∂

∂x

(
−iωφ1

∂φ∗1
∂x
+ ∗

)
+ ∂

∂y

(
−iωφ1

∂φ∗1
∂y
+ ∗

)]
or, after cancelingε,

g∇ · (h∇φ01) = ∇ · (−iωφ1∇φ∗1 + ∗), (4.13)

which governs the fast spatial variations ofφ01. At the next orderO(µ2, εµ) we get

µ2

[
∂φ00

∂t ′2
− g∇′ · (h∇′φ00

)]− εµg [∇ · (h∇′φ01
)+∇′ · (h∇φ01)

]
= −εµ

{
∂

∂t ′

(∣∣∣∣∂φ1

∂x

∣∣∣∣2+ ∣∣∣∣∂φ1

∂y

∣∣∣∣2+ ∣∣∣∣∂φ1

∂z

∣∣∣∣2
)
+ ω

2

g

(
φ1
∂2φ∗1
∂z∂t ′

+ ∂φ1

∂t ′
∂φ∗1
∂z
+ ∗

)}

−εµ{∇′ · (−iωφ1∇φ∗1 + ∗)+ ∇ · (−iωφ1∇′φ∗1 + ∗)
+∇ · (φ1t ′∇φ∗1 + ∗)}, (4.14)

which governs the slow variation ofφ00 andφ01, i.e., of φ0. Thus (3.10) gives a consistent
perturbation scheme.
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4.3. SECOND HARMONIC

Let us definef2 by the homogeneous boundary-value problem

∂2f2

∂z2
− k2

2f2 = 0, −1< z < 0, (4.15)

∂f2

∂z
− 4ω2

g
f2 = 0, z = 0, (4.16)

∂f2

∂z
= 0, z = −h, (4.17)

then

f2(x, y, z) = cosh k2(z+ h)
cosh k2h

(4.18)

with

(2ω)2 = gk2 tanhk2h. (4.19)

Applying Green’s formula tof2 andφ2, we get∫ 0

−h

(
f2∇2φ2 + k2

2f2φ2
)

dz+ f2 [∇φ2]−h · ∇h = −F2. (4.20)

The boundary term on the left isO(µ) smaller than the rest and can be discarded. Upon letting

φ2 = − igσ2ω
f2, (4.21)

we obtain an equation governing the fast variation ofσ

∇2σ + k2
2σ = G2, (4.22)

where

G2 = g

2ω
Cg2

{
2

(
∂η

∂x

)2

+ 2

(
∂η

∂y

)2

+ 3ω4

g2
η2+ η∇2η

}
(4.23)

and

Cg2 =
1

2

2ω

k2

(
1+ 2k2h

sinhk2h

)
. (4.24)

We note that only the short-scale variation ofσ is of concern;h can be treated as locally
constant.
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4.4. SUMMARY

Equations (4.9), (4.12) and (4.22) constitute the mild-slope approximation for short and long
waves up to the second order inε or µ. For a practical coastal geometry and bathymetry,
numerical means are necessary. As the first step, one can employ the hybrid-element method
of Chen and Mei [8] to calculate the short-wave potentialφ1. This requires the discretization of
a large domain with a resolution fine enough over the short wavelength, in order to give the fast
and slow variation ofφ1. Afterwards the forcing functions forφ0 can be calculated from (4.9),
with F0 defined by (3.12). We remark that, in the special case whereφ1 is essentially periodic
over the fast coordinates(x, y), as in the case for pure refraction, the ray approximation
applies, thenφ01 is also periodic over the fast scales. The slow evolution of the long-wave
partφ00 can be obtained from the spatial average of (4.14). Subsequently, the variation ofφ01

can be solved. In general, however,φ1 involves diffraction and is not at all spatially periodic;
such a separation by homogenization is not possible. It is then necessary to solve (4.12) for
φ0 as a single equation. Thus, it is necessary to discretize a large domain with a resolution
fine enough over the short wavelength, but this is no more demanding than what is needed for
solving (4.9) for the short waves.

Whenφ0, φ1 andφ2 are solved, the velocity potentialφ is given by (2.7), and the free-
surface displacement by

ζ = −1

g

(
∂φ

∂t
+ ζ ∂

2φ

∂t∂z

)
+ 1

2g

((
∂φ

∂x

)2

+
(
∂φ

∂y

)2

+
(
∂φ

∂z

)2
)
+O(ε3), (4.25)

where all terms on the right are evaluated onz = 0. This formula can be deomposed into
harmonics

ζ = ε(ζ1 e−iωt + ∗)+ ε2(ζ0+ ζ2 e−2iωt + ∗) (4.26)

with

ζ1 = iω

g
φ1, (4.27)

ζ0 = 1

g

{
−∂φ0

∂t ′
+ ω

2

g2

(
φ1
∂φ∗1
∂z
+ ∗

)
+ 1

2

(∣∣∣∣∂φ1

∂x

∣∣∣∣2+ ∣∣∣∣∂φ1

∂y

∣∣∣∣2+ ∣∣∣∣∂φ1

∂z

∣∣∣∣2
)}

, (4.28)

ζ2 = 1

g

{
−ω

2

g2
φ1
∂φ1

∂z
+ 1

2

(
∂φ1

∂x

)2

+
(
∂φ1

∂y

)2

+
(
∂φ1

∂z

)2
}
. (4.29)

5. Comparison with existing results

It is well-known for a monochromatic train of short waves that the mild-slope equation (MSE)
is quite robust despite the fact the derivation is only based on weighted depth averaging. In
particular, in two limiting cases where diffraction can be treated: (a) finite wavelength and hor-
izontal seabed and (b) shallow water waves over varying depth, MSE agrees with the known
equations derivable by the rigorous perturbation scheme. On the other hand, for pure refraction
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of monochromatic waves on slowly varying depth, the relation between MSE and the ray
approximation has been discussed by Jonsson [16] , Kirby [17] and Dingemans [18] (see Liu,
[19], for a review). It is easy to check that for refracting waves with a narrow frequency band,
(4.9) leads to the well-known conservation equation for wave action. Specifically, we let

η = AeiS/µ, (5.1)

whereA = A(x′, y′, t ′) is the wave amplitude andS(x′, y′)/µ is the wave phase with

k = ∇′S. (5.2)

It follows by using the definitionω = kC at orderO(µ0) and by collecting allO(µ) terms in
(4.14) that we have

2
∂A

∂t ′
+ ∇′ · (CgA)+ Cg · ∇′A = 0. (5.3)

whereCg = Cgk/k. Multiplying the preceding equation byA∗ and adding the result to its
own complex conjugate, we get

∂|A|2
∂t ′
+ ∇′ · (Cg|A|2) = 0, (5.4)

which agrees with the law of wave-action conservation for narrow-banded waves.
We now turn to the long waves induced nonlinearly by narrow-banded short waves. By sys-

tematic multiple-scale analysis, several results for the following limiting cases are known: (a)
a horizontal seabed (Agnon and Mei, [5]) and (b) pure refraction over slowly varying seabed
(Mei and Benmoussa, [4]). Indeed, if the depth is constant and short waves are horizontally
periodic (e.g., progressive or partially standing waves), the spatial average of (4.14) over a
horizontal period gives (5.10) of Agnon and Mei [5]. In the limiting case whereφ1 is a train
of progressive waves, the long-wave potential is known to be governed by

∂2φ0

∂t ′2
− gh∇′2φ0 = 2ω3

k

cosh2 kh

sinh2 kh

∂ |A|2
∂x′
− ω2

sinh2 kh

∂ |A|2
∂t ′

(5.5)

(see Mei [20], p. 613). By straightforward calculations, the right-hand side of (4.12) according
to (3.12) is precisely the right-hand side of (5.5), except for a factorεµ. Since all the forcing
terms vary slowly inx′, the left-hand side of (4.12) becomes

µ2

(
∂2φ0

∂t ′2
− gh∇′2φ0

)
. (5.6)

Removing the ordering parameters, we recover Equation (5.5). Thus (4.12) is the generaliza-
tion of (5.5) for a mild-bottom slope and general short waves experiencing diffraction and
refraction.

186123.tex; 7/08/1995; 8:33; p.10



Mild-slope approximation for long waves53

Figure 1. Harbor with complex bathymetry and coastline.

6. Harbor attacked by periodically modulated wind waves

As an illustration, we consider a large harbor as sketched in Figure 1. LetCo be a semicircle
of radius large enough to include all topographical irregularities. The harbor, denoted byH
is defined to be the fluid region bounded on the right byCo. The boundary of the harbor is
designated byB. The sea, denoted byS, is defined to be the fluid region to the left (out-
side) ofCo and the straight coastlineC. For simplicity the sea depth inS is assumed to be
constantho.

Let the incident short (wind) waves arrive at the incidence angleθo, then

ηI = AI exp(ikox cosθo + ikoy sinθo), (6.1)

whereko is the real root of (4.2) forh = ho. Assume for simplicity of demonstration that the
incident wave envelope is sinusoidal,

AI = Aexp(Kx′ cosθo +Ky′ sinθo − i�t ′)+ ∗, (6.2)

where

� = CgK. (6.3)

If we leave the effects of the harbor for later correction, the reflected short waves from the
straight coast is given by

ηR = AR exp(−ikox cosθo + ikoy sinθo) (6.4)

with the envelope

AR = Aexp(−Kx′ cosθo +Ky′ sinθo − i�t ′)+ ∗. (6.5)
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6.1. THE HARBOR

Within the harborH we can write the short-wave displacement as

η = η−e−i�t
′ + η+ei�t

′
. (6.6)

From (4.9) we get

∇ · (CCg∇η±)+
(
ω2Cg

C
∓ 2µω�

)
η± = 0, (6.7)

which is an elliptic equation. Let the shorelineB be reflective; the normal velocity must vanish
so that

∂η±

∂n
= 0, on B. (6.8)

The forcing termF0 in (4.12) (see (3.12)) involves zeroth and second harmonics in� with
respect to the long-period oscillations. The former forces steady set-up or set-down, or steady
current and is of no concern to harbor resonance; the corresponding response will be denoted
by 〈φ0〉. We shall be interested only in the sinusoidal forcing and its response, hence

φ0 = φ−0 e−2i�t ′ + φ+0 e2i�t ′ + 〈φ0〉. (6.9)

It follows from (4.12) that

∇ · (h∇φ±0 )+
4µ2�2

g
φ±0 = −F±0 , (6.10)

whereF±0 is defined by

F0 = F−0 e−2i�t ′ + F+0 e2i�t ′ + 〈F0〉. (6.11)

The boundary conditions onB is

∂φ±0
∂n
= 0 on B. (6.12)

The second harmonic displacementσ can be similarly decomposed and will be omitted.

6.2. THE SEA

The short-wave displacement can be written as

η = ηI + ηR + η0, (6.13)

whereη0 denotes the outgoing short waves radiated from the harbor

η0 =
∞∑
n=0

H(1)
n (kor) sinθAn e2i(Kr ′−�t ′) + ∗ (6.14)
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with H(1)
n (kor) denoting the Hankel function of the first kind andθ = ± π/2 along the

straight coast. Note that the solution satisfies the no-flux condition along the coastC. The
constant complex coefficientsAn are yet unknown.

In the seaS, φ0 consists of slowly oscillating parts as well as nonoscillating parts

φ0 = φI0 + φR0 + φF0 + 〈φ0〉. (6.15)

The oscillating parts consists of long wavesφI0, φ
R
0 bound to the incident and the reflected

short waves and the free long wavesφF0 . The bound long waves can be obtained in terms of
the short wave and takes the form(

φI0

φR0

)
=
(
φI−0 e−2i�t ′ + φI+0 e2i�t ′

φR−0 e−2i�t ′ + φR+0 e2i�t ′

)

=
(
CI e2iKx ′ cosθo

CR e−2iKx ′ cosθo

)
e2i(Ky ′ sinθo−�t ′) + ∗, (6.16)

whereCI andCR are constant coefficients in terms of the short incident and reflected waves.
Because of the radial attenuation as(kr)−1/2, the scattered short wavesηS do not induce bound
long waves, as pointed out by Zhou and Liu [7]. The free long waves represented byφF0 have
the characteristic velocity

√
gho and must be of the form:

φF0 = φF−0 e−2i�t ′ + φF+0 e2i�t ′ =
∞∑
n=0

DmH
(1)
n (2Kor

′) sinnθ e−2i�t ′ + ∗, (6.17)

whereDm are unknown expansion coefficients, and

Ko = �√
gho

. (6.18)

Along the semicircleCo we must require the continuity of pressure and flux, therefore

{φ0}H = {φ0}S , (6.19){
∂φ0

∂r

}
H

=
{
∂φ0

∂r

}
S

. (6.20)

6.3. NUMERICAL STRATEGY

The hybrid-element method of Chen and Mei [8] can be applied to the boundary-value prob-
lems for both the short waveη± and the long waveφ±0 . The idea is to replace each boundary-
value problem by a variational principle which involves an area integral over the harborH and
a line integral alongCo. It suffices to demonstrate the strategy forφ±0 . Briefly the potential
φ±0 in H is approximated by finite elements. The stationary functional is then a quadratic
form of the unknown nodal coefficients and of the unknown expansion coefficientsφF±0 in
S. Extremization of the functional with respect to each coefficient leads to matrix equations
which can be solved.

186123.tex; 7/08/1995; 8:33; p.13



56 Chiang C. Mei

We now give the stationary functionalJ for the oscillatory part of the zeroth harmonic
potential proportional to the time factor e±2i�t ′. Let the superscriptsH andS distinguish the
potentials in the harbor and in the sea

φH
0 = φ±0 , φS

0 = φF±0 + φI±0 + φR±0 . (6.21)

and let the overhead bar denote the difference between the total potential and the parts due to
the bound long waves

φ̄S
0 = φF±0 , φ̄H

0 = φH
0 − φI±0 − φR±0 . (6.22)

Then the stationarity of the following functional

J (φH
0 , φ

S
0 ) =

∫ ∫
H

dA

{
1

2

[
h(∇φH

0 )
2− 4µ2�2

g

(
φH

0

)2]− F±0 φH
0

}

=
∫
Co

h

[
(1

2φ̄
S
0 − φH

0 )
∂φS

0

∂r
− φ̄

S
0

2

∂

∂r
(φI±0 + φR±0 )

]
ds (6.23)

is equivalent to the corresponding boundary-value problem, as can be easily proved along the
lines of Chen and Mei [8], (see also Mei, [20]).

7. Concluding remarks

We have derived the mild-slope approximation which accounts for linear and nonlinear effects
to the second order in wave steepness and bed slope for narrow-banded sea waves. The ap-
proximate equations include the existing mild-slope equation for the short waves, its second
harmonic and its zeroth harmonic with respect to the period of the carrier wave. The zeroth
harmonic corresponds to slow oscillations in time and can be used to predict long-period
oscillations in a harbor much larger than the length of the wind waves. The long-period waves
include nonlinear effects of refraction and diffraction of short waves and have comparable
dependence on both short and long spatial scales which cannot be conveniently separated in
general.

To develop a theoretical model for practical prediction of harbor oscillations by wind
waves, many improvements can be envisioned. If the harbor entrance is much narrower than
the typical horizontal dimension of the harbor, significant long-period oscillations occur only
after a time much longer than the resonant period. Wind waves from a distant storm may
also last from hours to days. Therefore it is desirable to extend the present theory to higher
orders in order to account for further nonlinear effects. There are some theoretical efforts to
improve the mild-slope equation for the short waves (see Liu, 1990, for a review), but the
theoretical framework is not complete unless the long-period part is also extended. Moreover,
if the resonant amplification of long-period motion is strong, it may be necessary to replace
the present theory by one where the long-period displacement is of the first order, as the short
waves. This is a much more laborious undertaking as shown by Foda and Mei [21] for edge-
wave resonance. Needless to say, satisfactory representation of wave-breaking of short waves
on a gentle beach is essential, but it is very difficult and will likely remain a challenge for a
long time.
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