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Mild-slope approximation for long waves generated by short waves
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Abstract. The mild-slope approximation has become a popular basis for calculating infinitesimal surface waves on
slowly varying depth. It is less restrictive hence more advantageous than the ray and parabolic approximations for
describing diffraction and refraction by bathymetry and/or by complex coastlines. Since its computation involves
only two horizontal coordinates, the mild-slope equation is also numerically less demanding than the solution of
fully three-dimensional equations for a horizontal area with sides much greater than the typical wavelength. By
consideration of nonlinear effects of the second order, the mild-slope approximation for long waves over slowly
varying depth is derived here, in order to provide a convenient basis for predicting long-period resonance in a large
harbor by short-period wind waves.
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1. Introduction

In many harbors of horizontal dimensioids(1 — 10 km) oscillations of periods oD (1 —

10 min) have often been recorded. When one of these modes is resonated, costly damages to
ship fenders and mooring lines and hazards to loading and unloading are possible. Expensive
remedies by adding or modifying breakwaters may not be effective unless the mechanism of
resonance can be properly predicted. As an example, to eliminate recorded slow oscillations
in Pier J and in the Naval Basin at the Port of Long Beach, California, renovations are being
proceeded on the basis of linearized theory of resonance. In both laboratory and numerical
models, the incident waves are assumed to have the same frequency as that of the resonant
mode. This assumption is, however, questionable since the incident waves are not of tsunami
origin and are caused by distant wind. Energy in the long-period part of the sea spectrum is
the nonlinear consequence of the short wind waves of periods inth&%second range. In
principle, the long waves cannot be treated separately from the short waves.

There exist a few theories treating long-period harbor oscillations by groups of short-period
wind waves. Bowers [1] considered two narrow channels in series with the outer channel being
wider and the waves are long-crested in both channels. Mei and Agnon [2] gave an analytical
theory for a narrow bay perpendicular to a long and straight coast; the sea depth being constant
everywhere. Wu and Liu [3] considered a rectangular harbor with two breakwaters along a
straight coast, also for constant depth. The physical picture described in all these theories is
that periodic groups of narrow-banded incident short waves are accompanied by long-period
set-down waves propagating at the group velocity of the short carrier waves. Upon reflection
by the coast and scattering by the harbor entrance, free long waves of much longer period,
unforced by radiation stresses, are also generated in and outside the harbor. These free long
waves, which have the characteristic velocifigh, can be resonated inside the harbor to
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significant amplitude. Other related theories on long waves by short wave groups have been
published earlier by Mei and Benmoussa [4] for refraction over one-dimensional bathymetry,
Agnon and Mei [5] for diffraction and radiation by a two-dimensional floating cylinder, Agnon
and Mei [6] for diffraction by an infinitely long shelf, and Zhou and Liu [7] for scattering by a
circular island on a horizontal seabed. There is yet no general theory for effective calculation
of the combined effects of bathymetry and lateral boundaries (coastline, breakwaters).

Since caustics can occur over a mildly sloping seabed, a good theoretical model must be
able to account for both refraction and diffraction. For resonance by long-period tsunamis
the linearized long-wave equation can be treated effectively by the hybrid-element method of
Chen and Mei [8]. For short wind waves over slowly varying bathymetry, the ray approxima-
tion, which involves one-dimensional computations, is useful only if caustics are not present.
When either caustics or breakwaters are present, the mild-slope equation (MSE) is a better tool
since it has the important advantage of accounting for both refraction and diffraction. From
the computational standpoint MSE reduces the mathematical problem from three- to two-
space dimensions, and can also be solved by the hybrid-element method, as demonstrated by
Houston [9]. Various extensions of the mild-slope equation have been made by several authors
in recent years (Booij [10] for waves on a current; Radder [11] for narrow frequency band,
Kirby [12], Chamberlain and Porter [13] and Porter and Staziker [14] for not-so-mild bed
slope).

To treat harbor oscillations due to narrow-banded short waves which are both refracted and
diffracted by slowly varying bathymetry, it is desirable to extend the mild-slope approximation
to long waves as well. Lét be the typical deptk, A, « and Aw be the typical wave number,
amplitude, frequency, and frequency band width, respectively. Thenk A represents the
typical wave steepness apd= Aw/w the rate of modulation. In this paper we shall assume
these two ratios to be small and comparable

e=0( <L (1.1

In addition the spatial rate of depth variation with a wavelength is also small
Vh
i O(n) =0(@E) K1 1.2)

We shall obtain the mild-slope approximation for both the short and long waves up to the
second ordei0(g?), O(sp) and for the ranges gfwt = O(1) and (ukx, uky) = O(1).

The resulting equations can be used as the basis for numerical modelling of harbor problems
by the hybrid-element method. Steps for application to harbor oscillations are sketched, and
numerical implementation will be reported in the future.

2. The governing equations

For an incompressible and inviscid fluid the velocity potential is governed by Laplace’s equa-
tion in the fluid

82
a—jz +V2% =0 —h(x,y)<z<{(x 1), (2.1)
whereV denotes the horizontal gradient

a0 %2 92
V=(—,—) and V?=_—— +—. (2.2)
ox’ dy 0x2  0y?
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On the seabed there can be no normal flux

]

9% _ _vg.vh. (2.3)

0z
On the free surface = ¢ (x, y, t), we assume that the atmospheric pressure is a constant. The
kinematic and dynamic conditions can be combined to give

3¢ ¢ d 5 1 )
— — = ——(U)*— zU- VU, 24
8z 8% a2 (2.4)
whereu = (d¢/dx, d¢/dy, dp/dz). The free-surface displacement is relatedptby the
Bernoulli equation

106 1 [[30\> [30\° [99\°
=——4+ == — — . 2.5
3 g ot +2g |:(8x> +(E)y * 0z 25)
Anticipating that the free-surface displacement corresponding to the slow oscillations be

of O(¢?), or O(ep) we expect the potential to have zeroth and first harmonie3(aj, and
second harmonics @ (¢?), i.e.,

¢ = e(do+ P17 + %) + e2(h2€72 + %) + 0(ed), (2.6)

wheresx denotes the complex conjugate of the preceding termgand ¢, (x, v, z,t'), n =
0,1,2,...with ¢ = ut. All terms ¢, are of order unity and include terms of higher orders in

¢ andu. In principle, multiple-scale spatial coordinates can also be introduced to describe the
first and slow variations in horizontal directions. Note thgg, which is of orderO (¢), varies

with the time slowly and affects the pressure field at the second order theputghy/9¢’ in

the Bernoulli equation.

To examine long waves of frequency(sw) or O (uw) it is necessary to keep the term
e?d%¢o/dt’> which must arise from (2.4); hence it is necessary to keep some high-order terms
including O (e?) and O (ue?). Specifically, after Taylor expansion abaut= 0, quadratic
terms in (2.4) and (2.5) must be kepg.,

29  ap | 1[[ap\* [(06\* [96\*| 109 9%
oz T8 T 5{‘5[(5) +(@) +<a—z) MPFTETTE
_0 (9999 _ 9 (309 5
8x(8t8x> 8y(8t ay>+0(8)‘ 2.7)

All terms of the right will contribute to terms that vary in time only slowly and of the order
O(?). On the other hand, cubic terms, which give rise to odd harmonics only, will not
contribute to the long wave & (&3).



46 Chiang C. Mei
3. Harmonic decomposition

Substituting (2.6) in (2.1) and (2.3), we get after separating the time-harmonics

G
072

+ V%, =0, —-h<z<C, (3.1)

whereh is a slowly varying function ok andy. Similarly, from the seabed boundary condi-
tions we get from various harmonics

b
9z

- —Vé¢,-Vh n=0,12... . (3.2)

On the free surface the boundary conditions involve time derivatives. For narrow-banded
waves it is convenient to use the fast and slow time variatéesl:’ = ur so that
39 3% %9 2%

— — 4+ 2u .
a2 = ot + ataﬂ tH at’2

(3.3)

Substituting (2.6) in (2.7) and separating the harmonics, we get, by keeping terms of orders
O(e), O(ep) and O (su?), and then dividing the entire boundary conditionshyhe following
zeroth harmonic

8¢0 /’L 82¢0
= Fo, =0, 3.4
07 g 81‘/2 + fo < (3.4)

where

oo _ 3o 3°po | o 3°po g0 9*¢o
0 ¢ |\ ax axar " ay ayar | 9z azor

)

w? 207 | 31 3¢5
+ ? <¢1818ﬂ + ot 0z * *>}

3¢1

2
d¢1
ax + ‘

0z

391
dy

efa $1\ 067
e[ (o2 5]
3 . A1\ 97
w35 (o) 5 )

e d¢po o 0 (0o dgo
g{w@ﬂw+)+aﬂwa*0f (39

All terms on the right-hand side are evaluated at 0.

For the first harmonic, it suffices to keep terms of or@ge), O (¢?) and O () with the
result

9 2
812 = %¢1 + F, z=0, (3.6)
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where

2 9
F=e2%Veo Vo + MZiw%, z=0. (3.7)
g

Finally, for the second harmonic it is only necessary to kéap?) and O(su) terms,
yielding

2
2 _ 4 i F z=0, (3.8)
0z g
where
oo o [ (38", (00) %)1&2 29,
27 g (3X) (3y) (32 g¢18z
9 ( g\, 0 ( _
(o) i (e5)) =0 39

In view of the boundary conditions (3.2) and (3.4%,/9z = 0 on bothz = 0 andh
to the leading order. This suggests, subjech foosterioricheck for consistency, thal is
independent of the fast coordinatesy, z to the leading ordetr.,e.,

$o = ¢oo (xl, Y, t/) + edo1 (x, V. Z,x,, t/) + 0(&?). (3.10)
Thus

Vo = 1V oo + Vo1 + O (€2, e, u?), (3.11)
where

, a 0
V - P ’
ax’  dy’

and Fp and F; may then be simplified to

2 2 2 4% *
gl ad w 0°¢;  0¢10¢
Fo= —H1_ 2 @
0 2 { aw( )+ 2 <¢18z8t’+ o0 9z

e o . dp1\ 997 ) . ¢\ 997
A (o s ) Thae] o g [ (cromng ) 5|

(3.12)

061
ox

2‘%

1‘%
dy

0z

and

091
ot
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4. Mild-slope approximation

For monochromatic surface waves of infinitesimal amplitude, the approach of Smith and
Spinks [15] for deriving the mild-slope equation is as follows. They first assume a solution for
¢1 in the form which is valid for locally constant depth, and then take a weighted vertical
average of the three-dimensional equation via Green’s formula. Here the three potentials
oo, $1 and¢, are governed by similar linear boundary-value problems, hence their approach
can be applied to all.

4.1. HRST HARMONIC
For convenience we first recall the procedure of Smith and Spinks, and introduce

coshk(z + h)

= 4.1
f(x,5,2) ~oshih (4.1)
with
w? = gk tanhkh. (4.2)
Note thatf is the homogeneous solution to the boundary value problem,
82
— —k’f=0, —h<z<0, (4.3)
9z
of
___f:O’ Z:O, (44)
0z g
o =0, z=-h. (4.5)
0z
Applying Green’s formula tgf and¢, we get
Of P 0%f opr  3f7°
— - |z =|f— —p1—| . 4.6
/h(f 322 ¢18z2> z [f 2z ¢18z]h (4.6)

By using the conditions governing: (4.3) to (4.5)ands: (3.1), (3.2) and (3.6), we can easily
prove that

0 0
f V21 dz + /h k?fprdz 4+ f[Ve] - Vh = — [fF] o (4.7)

h

We now assume
ig
1= —En(x, f(x,y,2) (4.8)

and substitute this, (4.1) and (3.13) in (4.6). Keeping only term@@i°) and O (1), we get

c 9
V- (CCVn) 40 + 2in8—;7/ — 0. (4.9)
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WhereC andC, denote the phase and group velocities, respectively

) C 2kh
= — =—|1 . 4.10
¢ ’ Ce 2 < * sinh) (4.10)

Without the third term on the left, this is the original mild-slope equation (MSE) for mono-
chromatic waves. The additional term is consistent with the extension by Radder [11] based
on a Hamiltonian approach.

4.2. ZEROTH HARMONIC

Integration of (3.1) fom = 0 fromz = —h to z = 0 gives

0 52y ddo do
——dz=|— . 4.11
/hazz ¢ [8z} [81] (4.11)
This amounts to the application of Green formulagipand 1. Employing the boundary
conditions oy = 0 and#, (3.2) and (3.4), we get

20°65

a2 8V (hV o) = gFo. (4.12)

"
This is the mild-slope approximation for the zeroth time-harmonic which contains fast and
slow variation in space. To gain further insight and to check the consistency of the assumption
(3.10), we use multiple-scale coordinates in spages wx;, in order to separate terms of
different orders in (4.12). At the ordé?(¢) we get

)]

3 A 3
e{—gV - (hVoo)} = —¢ [E < ] ;il + *) + 3 <
gV - (hVgo)) = V - (—iwop1 V7 + %), (4.13)

or, after canceling,

which governs the fast spatial variationsggf. At the next orderO (u?, i) we get

0
2 [ 8‘7;020 - gV’ (hv/%o)] —eug [V (hV'¢o1) + V' - (hVeo1) |
B a1 |8d1|> |01 205 0¢1 0}
- “[aﬂ (‘ dx ‘5 +‘ 3z ) g (¢1818t’ ot 8_z+*)

—e{V' - (—iw¢ Vi + ) + V - (—iwgV ¢f + #)
+V - (g V7 + ), (4.14)

which governs the slow variation @fyo and ¢g, i.e., of ¢o. Thus (3.10) gives a consistent
perturbation scheme.
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4.3. SECOND HARMONIC

Let us definef, by the homogeneous boundary-value problem

Pfe kK2f, =0 1 0 4.15
8z2_2f2—’ —L<I<U (4.15)
0 4?
U 407 o .=0 (4.16)
0z g
9
M _o = _p (4.17)
07
then
coshky(z + h)
)= 4.1
Sfo(x,y,2) cosh kol (4.18)
with
(2w)? = gk, tanhkoh. (4.19)

Applying Green’s formula tgf, andg,, we get

0
/ (12524 K o) 6+ o[Vl - Vh = —Fa (4.20)

The boundary term on the left @(«) smaller than the rest and can be discarded. Upon letting

$2 = —%fz, (4.21)

we obtain an equation governing the fast variatiow of

V0 + ko = G, (4.22)
where
2 2 4
g on on 3w® , 5
Go,=—C 21 — 21 — — \Y% 4.23
2 ngz{ (8x)+ (ay)+g2”+” n (4.23)
and
12w 2koh
C,=——11 . 4.24
£ 2k2< +sinhkzh) (4.24)

We note that only the short-scale variationcofis of concern;i can be treated as locally
constant.
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4.4. SIMMARY

Equations (4.9), (4.12) and (4.22) constitute the mild-slope approximation for short and long
waves up to the second order d¢nor n. For a practical coastal geometry and bathymetry,
numerical means are necessary. As the first step, one can employ the hybrid-element method
of Chen and Mei [8] to calculate the short-wave poterialT his requires the discretization of
alarge domain with a resolution fine enough over the short wavelength, in order to give the fast
and slow variation of,. Afterwards the forcing functions faf, can be calculated from (4.9),
with Fy defined by (3.12). We remark that, in the special case whgeigessentially periodic
over the fast coordinatege, y), as in the case for pure refraction, the ray approximation
applies, thenpg, is also periodic over the fast scales. The slow evolution of the long-wave
part¢go can be obtained from the spatial average of (4.14). Subsequently, the variafign of
can be solved. In general, howewver,involves diffraction and is not at all spatially periodic;
such a separation by homogenization is not possible. It is then necessary to solve (4.12) for
¢o as a single equation. Thus, it is necessary to discretize a large domain with a resolution
fine enough over the short wavelength, but this is no more demanding than what is needed for
solving (4.9) for the short waves.

When ¢y, ¢1 and¢, are solved, the velocity potential is given by (2.7), and the free-
surface displacement by

19 ¢ d¢ 09 \* (09
N

where all terms on the right are evaluatedzora= 0. This formula can be deomposed into
harmonics

¢ =€ +%) + %o+ L€ P +%) (4.26)
with

=", (4.27)

8
_ 1] 940 P (. 307 1(|ags]? | |9g1]® | |091]°
fo—g{—w gz( )*5(5 +‘§ +‘¥ S
2 2 2

L= 1 {_w_¢18¢1 } (%) + (%) + (%) } ) (4.29)

g 2 ay 0z

5. Comparison with existing results

It is well-known for a monochromatic train of short waves that the mild-slope equation (MSE)
is quite robust despite the fact the derivation is only based on weighted depth averaging. In
particular, in two limiting cases where diffraction can be treated: (a) finite wavelength and hor-
izontal seabed and (b) shallow water waves over varying depth, MSE agrees with the known
equations derivable by the rigorous perturbation scheme. On the other hand, for pure refraction
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of monochromatic waves on slowly varying depth, the relation between MSE and the ray
approximation has been discussed by Jonsson [16] , Kirby [17] and Dingemans [18] (see Liu,
[19], for a review). It is easy to check that for refracting waves with a narrow frequency band,

(4.9) leads to the well-known conservation equation for wave action. Specifically, we let

n=AdS/", (5.1)
whereA = A(x’, y', t') is the wave amplitude ansi(x’, y')/u is the wave phase with
k=V'S. (5.2)

It follows by using the definitiono = kC at orderO (1.°) and by collecting allD (1) terms in
(4.14) that we have

A
2 +V'- (CeA) +C; - VA =0, (5.3)

whereC, = C,k/k. Multiplying the preceding equation by* and adding the result to its
own complex conjugate, we get

d|A?

ot V' (C,lAPP) =0, (5.4)

which agrees with the law of wave-action conservation for narrow-banded waves.

We now turn to the long waves induced nonlinearly by narrow-banded short waves. By sys-
tematic multiple-scale analysis, several results for the following limiting cases are known: (a)
a horizontal seabed (Agnon and Mei, [5]) and (b) pure refraction over slowly varying seabed
(Mei and Benmoussa, [4]). Indeed, if the depth is constant and short waves are horizontally
periodic €.g, progressive or partially standing waves), the spatial average of (4.14) over a
horizontal period gives (5.10) of Agnon and Mei [5]. In the limiting case wlygres a train
of progressive waves, the long-wave potential is known to be governed by

3¢ hv,2¢_2w3cosh°'kha|A|2 w?  9A?
BV P = T TSRkl ox  sintfkh ot

8t/2
(see Mei [20], p. 613). By straightforward calculations, the right-hand side of (4.12) according
to (3.12) is precisely the right-hand side of (5.5), except for a fagtorSince all the forcing
terms vary slowly inv’, the left-hand side of (4.12) becomes

2
2 (M - ghV’2¢>o) . (5.6)

(5.5)

8t/2

Removing the ordering parameters, we recover Equation (5.5). Thus (4.12) is the generaliza-
tion of (5.5) for a mild-bottom slope and general short waves experiencing diffraction and
refraction.
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Figure 1. Harbor with complex bathymetry and coastline.

6. Harbor attacked by periodically modulated wind waves

As an illustration, we consider a large harbor as sketched in Figure L g a semicircle
of radius large enough to include all topographical irregularities. The harbor, denot&d by
is defined to be the fluid region bounded on the rightthy The boundary of the harbor is
designated byB. The sea, denoted by, is defined to be the fluid region to the left (out-
side) of C, and the straight coastlin€. For simplicity the sea depth i is assumed to be
constanti,.

Let the incident short (wind) waves arrive at the incidence afglthen

n! = A exp(ik,x cosh, + ik,y Siné,), (6.1)

wherek, is the real root of (4.2) foh = h,. Assume for simplicity of demonstration that the
incident wave envelope is sinusoidal,

Al = Aexp(Kx' cosh, + Ky'sing, —iQt) + *, (6.2)
where
Q=C,K. (6.3)

If we leave the effects of the harbor for later correction, the reflected short waves from the
straight coast is given by

n® = AR exp(—ik,x cos, + ik,y sin6,) (6.4)
with the envelope

AR = Aexp(—Kx' cost, + Ky’ sing, —iQt') + . (6.5)
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6.1. THE HARBOR
Within the harbor# we can write the short-wave displacement as
n=n e 4ytd?. (6.6)
From (4.9) we get

®?C

c £ x 2,uw$2> nt =0, (6.7)

V- (CC, V™) + (

which is an elliptic equation. Let the shoreliBebe reflective; the normal velocity must vanish
so that

+
9 _ o on B. (6.8)
on

The forcing termFg in (4.12) (see (3.12)) involves zeroth and second harmonifsviiith
respect to the long-period oscillations. The former forces steady set-up or set-down, or steady
current and is of no concern to harbor resonance; the corresponding response will be denoted
by (¢o). We shall be interested only in the sinusoidal forcing and its response, hence

b0 = g € X + g + (o). (6.9)
It follows from (4.12) that
4 292
V- (hVeE) + = gF = —Fy, (6.10)

whereF5" is defined by
Fo= Fy e 2% 4 pre® 4 (F). (6.11)
The boundary conditions 0B is

9 +
%0 _o onsp. (6.12)
on

The second harmonic displacementan be similarly decomposed and will be omitted.
6.2. THE SEA
The short-wave displacement can be written as

n=n"+n"+n° (6.13)

wheren® denotes the outgoing short waves radiated from the harbor

o0
n° =" H®(k,r)sinOA, K= 4 (6.14)
n=0
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with H® (k,r) denoting the Hankel function of the first kind add= 4 7/2 along the
straight coast. Note that the solution satisfies the no-flux condition along the Coasie
constant complex coefficients, are yet unknown.

In the sea$, ¢o consists of slowly oscillating parts as well as nonoscillating parts

do = + ¢ + 5 + (¢o). (6.15)

The oscillating parts consists of long wawgs ¢f bound to the incident and the reflected
short waves and the free long wawvgs. The bound long waves can be obtained in terms of
the short wave and takes the form

¢(l)i’ ¢0 —e—ZtQt + ¢§+eZtQt
Cl eZin’coseo ) L ,
— (Ky'sing,—t")
- ( CR g2iKx' cost, ety T (6.16)
whereC’ andCR are constant coefficients in terms of the short incident and reflected waves.
Because of the radial attenuation(&s) /2, the scattered short wave$do not induce bound

long waves, as pointed out by Zhou and Liu [7]. The free long waves represengdhave
the characteristic velocity/gh, and must be of the form:

o
b6 =¢g € g € =) Dy H 2K, sinng e +x, (6.17)
n=0

whereD,, are unknown expansion coefficients, and

K, = &. (6.18)
gh,

Along the semicircleC, we must require the continuity of pressure and flux, therefore

{#o} 2 = {¢o}s, (6.19)
{%} :{%} , (6.20)
or | 4 or Jg4

6.3. NUMERICAL STRATEGY

The hybrid-element method of Chen and Mei [8] can be applied to the boundary-value prob-
lems for both the short wavg" and the long wavey . The idea is to replace each boundary-
value problem by a variational principle which involves an area integral over the h#rbad

a line integral along’,. It suffices to demonstrate the strategy @‘ Briefly the potential

¢0i in #¢ is approximated by finite elements. The stationary functional is then a quadratic
form of the unknown nodal coefficients and of the unknown expansion coeffigigritsn

4. Extremization of the functional with respect to each coefficient leads to matrix equations
which can be solved.



56 Chiang C. Mei

We now give the stationary functiondl for the oscillatory part of the zeroth harmonic
potential proportional to the time factoF&% . Let the superscriptg¢ and$ distinguish the
potentials in the harbor and in the sea

D =05, B =b T+ (6.21)

and let the overhead bar denote the difference between the total potential and the parts due to
the bound long waves

b =05 P =03~y — o5 (6.22)

Then the stationarity of the following functional

1 41,22
J@F, ) = ff% dA{E[h(wg‘Y— “g (¢gf’)2]—F§¢é“’}

_ dps B 9
= / M [(%qsé‘ — ¢ — 5@+ o) | ds (6.23)
is equivalent to the corresponding boundary-value problem, as can be easily proved along the
lines of Chen and Mei [8], (see also Mei, [20]).

7. Concluding remarks

We have derived the mild-slope approximation which accounts for linear and nonlinear effects
to the second order in wave steepness and bed slope for narrow-banded sea waves. The ap-
proximate equations include the existing mild-slope equation for the short waves, its second
harmonic and its zeroth harmonic with respect to the period of the carrier wave. The zeroth
harmonic corresponds to slow oscillations in time and can be used to predict long-period
oscillations in a harbor much larger than the length of the wind waves. The long-period waves
include nonlinear effects of refraction and diffraction of short waves and have comparable
dependence on both short and long spatial scales which cannot be conveniently separated in
general.

To develop a theoretical model for practical prediction of harbor oscillations by wind
waves, many improvements can be envisioned. If the harbor entrance is much narrower than
the typical horizontal dimension of the harbor, significant long-period oscillations occur only
after a time much longer than the resonant period. Wind waves from a distant storm may
also last from hours to days. Therefore it is desirable to extend the present theory to higher
orders in order to account for further nonlinear effects. There are some theoretical efforts to
improve the mild-slope equation for the short waves (see Liu, 1990, for a review), but the
theoretical framework is not complete unless the long-period part is also extended. Moreover,
if the resonant amplification of long-period motion is strong, it may be necessary to replace
the present theory by one where the long-period displacement is of the first order, as the short
waves. This is a much more laborious undertaking as shown by Foda and Mei [21] for edge-
wave resonance. Needless to say, satisfactory representation of wave-breaking of short waves
on a gentle beach is essential, but it is very difficult and will likely remain a challenge for a
long time.



Mild-slope approximation for long waves57

Acknowledgments

The author is grateful for funds received from theUS Office of Naval Research through con-
tract NO0014-92-J-1754 administered by Dr.Thomas Swean, and from the US National Sci-
ence Foundation through grant CTS 96-34120 administered by Dr. Roger Arndt. The study
was motivated by author's membership in the Technical Review Committee for Moffatt &
Nichol Engineering, Inc. on the renovations for Port of Long Beach.

References
1. E.C.Bowers, Harbor resonance due to set-down beneath wave giobhsd Mech.79 (1977) 71-92.
2. C.C. Meiand Y. Agnon, Long-period oscillations in a harbour induced by short wavekiid Mech.208
(1989) 595-608.
3. J.-K.Wu and P. L.-F. Liu, Harbour excitations by incident wave grodyfsluid Mech.217 (1990), 595-613.
4. C. C. Mei and C. Benmoussa, Long waves induced by short-wave groups over anuneven bhdttaid.
Mech.139 (1984) 219-235.
5. Y. Agnon, and C. C. Mei, Slow drift motions of a rectangular block in beam de&tuid Mech.151 (1985)
279-294.
6. Y.Agnon and C. C. Mei, Trapping and resonance of long shelf waves due to groups of shortlvairgd.
Mech.195 (1988a) 201-221.
7. C.Zhou and P.L.-F. Liu, Second-order low-frequency wave forces on a vertical cyliné&rid Mech.175
(1987) 143-155.
8. H.S.Chenand C. C. Mei, Oscillations and wave forces in an offshore harbor. ParsoMiTdep 190,
Dept. Civil and Environm. Engng., MIT, Cambridge (1974) 215 pp.
9. J. R. Houston, Combined refraction and diffraction of short waves using the finite element nfgtpod.
Ocean Res3 (1981) 163-170.
10. N. Booij, Gravity waves on water with non-uniform depth and curiRap. No. 81-11981) Delft University
Technology.
11. A. C. Radder, An explicit Hamiltonian formulation of surface waves in water of finite dépkiuid Mech.
237 (1992) 435-455.
12. J.T. Kirby, A general wave equation for waves over rippled eé#uid Mech.162 (1986) 171-186.
13. P. G. Chamberlain and D. Porter, The modified mild-slope equakiéiuid Mech.(1995) 393—401.
14. D. Porter and D. J. Staziker, Extensions of the mild slope equatiétuid Mech.300 (1995) 367—-382.
15. A. Smith and Sprinks, Scattering of surface waves by a conical islarfluid Mechanics72 (1975)
373-384.
16. 1. G. JonssorBooij's Current-wave Equation and the Ray ApproximatiBrogress Report 54, 15VA, Inst.
Hydrodyn. and Hydraulic Engng., Technical University of Denmark (1981) 7-20.
17. J. T. Kirby, Surface wave-current interaction over slowly varying topographgeophys. Re89 (1984)
745-747.
18. M. W. DingemansWater Wave Propagation Over Uneven Botto®ingapore: World Scientific Publishers
(1997) 899 pp.
19. P.L.-F. Liu, Wave transformation in the s€xgean Eng. Scb (1990) 27-63.
20. C.C. Mei,The Applied Dynamics of Ocean Surface Wagasgapore: World Scientific (1989) 740 pp.
21. M. A. Foda and C. C. Mei, Nonlinear excitation of long trapped waves by a group of short sivElisid

Mech.111 (1981) 319-345.



